Геодезия что это такое

 

Какие приборы используются в геодезии? Что регулируют СНиП при проведении геодезических работ в строительстве? Какие услуги включают в себя топографо-геодезические и разбивочные работы?. За последнее столетие геодезия развилась от довольно простых геодезических технологий, которые помогли точно определить местоположение на Земле, до сложного инструментария методов, доступных в настоящее время для научных исследователей и студентов.

Геодезические методы

Основные геодезические методы:

  • GPS/GNSS (Глобальная система позиционирования/Глобальная навигационная спутниковая система) Высокоточная GPS станция. Обычно три спутника GPS используются для определения местоположения, а четвертый обеспечивает временную коррекцию. Вместе они позволяют рассчитывать точные позиции. Положение можно рассчитать, используя три спутника плюс четвертый, чтобы скорректировать погрешность часов. Принимая во внимание, что портативный GPS может быть точным с точностью до нескольких метров или десятков метров, высокоточные «дифференциальные» GPS-устройства, которые ученые Земли используют в своих исследованиях, могут измерять движения с точностью до одного миллиметра в год. Первыми основными применениями высокоточного GPS были мониторинг тектонических движений плит и оценка опасности землетрясений и вулканов. В последнее время, ученые смогли применить эту технику к опасностям оползней, мониторингу подземных вод, измерению приливов, мониторингу льда/снега, а также влажности почвы и атмосферы.
  • Бортовой LiDAR. С бортовым LiDAR сканер устанавливается на самолете и объединяется с данными GPS и IMU (инерциальная единица измерения) для получения топографических данных высокого разрешения. Лидар - это технология дистанционного зондирования, которая измеряет расстояние, посылая лазерные импульсы и вычисляя время возврата отражения. Лидарные сканеры могут быть установлены на летательных аппаратах, наземных штативах или мобильных устройствах (воздушный лидар, наземное лазерное сканирование и мобильный лидар соответственно). В зависимости от способа съемки, полученная топографическая модель может иметь разрешение от метров до сантиметров. Лазерные лучи также способны проникать и возвращаться через отверстия в растительном покрове, создавая топографию «голой земли» из последних возвращающихся сигналов, что невозможно при использовании других методов. Различия между первым и последним возвращением в растительности могут привести к увеличению объема и плотности купола. Повторное сканирование одной и той же области позволяет детально измерить топографические изменения. Лидар может быть использован для широкого спектра применений оценки опасности, стратиграфического анализа, понимания геоморфологических и тектонических процессов и исследования растительности.
  • InSAR (Интерферометрический радар с синтезированной апертурой). InSAR использует изменение фазы между последовательными изображениями для измерения изменений уровня земли. InSAR измеряет деформацию грунта, используя два или более радара с синтезированной апертурой. Чаще всего изображения получены с радиолокационных спутников, вращающихся вокруг Земли, но этот метод также можно использовать с воздушных или наземных датчиков. Изменение фазы радиолокационного сигнала между повторными изображениями позволяет измерять деформацию в сантиметровом масштабе в течение нескольких дней или лет и в больших регионах. Хотя могут возникнуть сложности из-за влажности земной поверхности и изменения атмосферных условий, радар способен проникать через облака и предоставлять данные на больших площадях, что делает его хорошим дополнением к другим методам, таким как GPS, Лидар и SfM, которые имеют более ограниченные пространственные размеры. InSAR имеет приложения для мониторинга стихийных бедствий (например, землетрясения, вулканы и оползни), измерения оседания грунта, и даже оценки уровня поверхностных вод.
  • GRACE гравитационная карта Земли. Измерение гравитационного поля Земли, также является элементом геодезии. Появление спутниковых гравитационных измерений оказало глубокое влияние на нашу способность определять изменяющееся распределение массы на Земле. GRACE (гравитационное восстановление и климатический эксперимент) привели к беспрецедентным наблюдениям. Гравитационное поле Земли неравномерно, что отражает распределение массы на нашей планете. Орбита спутников-близнецов GRACE нарушается неравномерным гравитационным полем, изменяющим расстояние между спутниками. Это изменение расстояния измеряется с помощью микроволновой системы измерения дальности. Этот метод используется в тандеме с GPS, так как каждый из спутников оснащен высокоточным приемником GPS. Эта мера гравитации Земли может использоваться для многих приложений, но изменения в грунтовых водах и массе льда были двумя из самых глубоких. Они помогли исследователям понять последствия изменения климата и изменения подземных вод с течением времени. Данные GRACE могут использоваться для отслеживания распределения воды по поверхности Земли на континентах, объема ледяного покрова, изменения уровня моря, океанских течений и динамики внутренней структуры Земли.
  • Альтиметрия: уровень льда и моря. Спутниковая альтиметрия измеряет расстояние между спутником и целью на Земле. Обычно это делается с помощью радиолокационной альтиметрической системы, которая посылает радиолокационный импульс на поверхность Земли, а затем измеряет время, что требуется импульсу, чтобы достичь поверхности и вернуться для оценки расстояния. Конкретные характеристики сигнала, такие как величина и форма сигнала, дают информацию о типе исследуемой поверхности. Существуют и другие альтиметрические системы, такие как ATLAS (усовершенствованная топографическая лазерная альтиметрическая система), лазерная альтиметрическая система на ICESat-2. Эти методы используются для обследования как уровня моря, так и высоты льда. Эти спутниковые миссии длятся годами, поэтому собирают данные, идеально подходящие для исследований изменения климата, так как уровни льда и моря можно измерять с течением времени.
  • SfM, основанная на съемке фотографий с разных направлений и расстояний. Структура из Motion или SfM - это фотограмметрический метод для создания трехмерных моделей объекта или топографии из перекрывающихся двухмерных фотографий, сделанных из разных мест и ориентаций, для реконструкции сфотографированной сцены. Применения SfM широко распространены: от многих областей науки о Земле (геоморфология, тектоника, структурная геология, геодезия, горное дело) до археологии, архитектуры и сельского хозяйства. В дополнение к орто-ректифицированным изображениям, SfM создает набор данных с плотным облаком точек, который во многом похож на тот, что получается с помощью воздушного или наземного Лидара. Преимуществами SfM являются его относительная стоимость по сравнению с Лидаром, а также простота использования. Единственное необходимое оборудование - камера. Компьютер и программное обеспечение необходимы для обработки данных. Дополнительно, воздушная платформа, такая как воздушный шар или дрон, также может быть полезна для топографических картографических приложений. Поскольку SfM опирается на оптические изображения, он не способен генерировать топографические продукты «голой земли», которые являются типичными производными от технологий на основе лидаров - таким образом, SfM обычно лучше всего подходит для районов с ограниченной растительностью.
  • Tiltmeters - это очень чувствительные инклинометры, которые измеряют изменение от горизонтального. Они могут быть установлены в скважинах с тензометрами. Tiltmeter также может быть установлен на поверхности земли. Наклонные измерители обычно используются для мониторинга разломов, вулканов, плотин, оценки потенциальных оползней, а также ориентации и объема гидроразрывов.

Какие задачи разрешает геодезия — 4 главные задачи

При помощи геодезической науки человечество пытается изучать и использовать свою родную планету. Геодезия как практическая наука способствует людям ориентироваться в ареале своего обитания, благоустраивать и видоизменять окружающую местность.

Но основное применение геодезии — это возведение зданий и прочих сооружений.

Задача 1. Выбор подходящего места для расположения объекта

Именно благодаря геодезии выбирается месторасположение стройки. Учитываются факторы строения толщи земли. Исследуется местность, проводятся геологические изыскания.

Составляется план-схема залегания горных пород, исходя из которой определяется состав закладываемого фундамента. Либо рекомендации геодезистов будут сделаны в пользу переноса участка строительства, а то и полной отмены плана.

Основные критерии при размещении строительных участков:

  • состав и характеристики слоев залегания горных пород;
  • рельеф местности;
  • окружающие территории.

Задача 2. Грамотная привязка строящегося здания к уже имеющимся

Так как строительство превратилось в человеческую страсть уже довольно давно, и застроены гигантские площади Земли, казалось бы, невозможно представить себе беспорядочное нагромождение домов в местах проживания человека.

Еще как возможно! Именно поэтому мегаполисы постоянно строят, перестраивают и достраивают. Они растут вверх и вниз и расползаются по поверхности планеты, словно плесень по дереву. И если бы не геодезическое проектирование, боюсь, человеческий муравейник бы рухнул, как карточный домик.

Да и с точки зрения комфорта для человека удобнее располагать свои сооружения в зависимости от уже существующих зданий.

Пример

Академик Курчатов поначалу не стал прокладывать дорожки вокруг подведомственного ему института. Дождавшись момента, как сотрудники сами протопчут нужные им пути, приказал заасфальтировать их.

Задача 3. Изображение участков на топографических картах

При помощи топографии вы получите подробный план местности застройки. На нем будут отображены все объекты, находящиеся на местности, их связь и инженерные коммуникации.

На схеме отобразится также рельеф местности.

Топографическая карта составляется в три этапа:

  1. Полевые работы (замеры на местности).
  2. Камеральные работы (сведение вычислений воедино).
  3. Составление плана (чертеж карты в соответствии с полученными данными).

При помощи топографии легко восстановить границы участка на местности.

Задача 4. Изучение крупномасштабных смещений земной коры

Это задача высшей геодезии. Именно благодаря таким работам определяются сейсмоустойчивые участки и территории, подверженные искажениям поверхности. Выявляется зависимость сдвигов платформ земной коры от спутников, планет и других космических тел Солнечной системы.

Приливы и отливы, активные поднятия и устойчивые понижения участков поверхности Земли — все это важные основные принципы глобальной геодезии. Эти факторы влияют на климат планеты, и изучаются они посредством экологических изысканий.

Геодезические работы и их виды

Фото 2

Однозначно ответить на вопрос, что такое геодезические работы, нельзя, поскольку существует множество самых разных определений данного понятия. Наиболее приближенное к истине определение – это все работы, которые проводятся в процессе возведения различных инженерных и гидротехнических сооружений.

Они делятся на два типа:

  1. Полевые – измерение и описание земной поверхности на местности.
  2. Камеральные – последующая обработка полученных на местности данных.

Такие работы могут быть предварительными, или начатыми до начала строительства и попутными, которые осуществляются в процессе стройки. Независимо от сроков выполнения, осуществляется попутный контроль в виде наблюдения за деформацией грунтов и замеров необходимых параметров.

Это интересно! Выбираем профессию: как можно стать археологом

Различают следующие виды геодезических работ:

  1. Топографо-геодезические – в данный вид входит создание всех возможных картографических схем, а также определение построение будущего сооружения. Вычисления осуществляют при возведении жилых комплексов, крупных инженерно-строительных сооружений, а также переустройстве городов. При этом, все съемки проходят в определенных строгих масштабах, соответствующим объектам, будь то населенные пункты или промышленные зоны с транспортными узлами.
  2. Разбивка – это разделение площади на квадраты с закрепленными вершинами, установка геодезических знаков и разработка разбивочных чертежей, которые выполнены в общепринятых государственных форматах и облегчают процессы строительства, а также обеспечивают гарантированный контроль качества. После проведения разбивки результаты направляются подрядчику застройки вместе с чертежами.
  3. Исполнительная съемка – проводится в течении всего строительства и фиксирует строящиеся объекты и их точное расположение. Съемка относится к контролирующим процессам и обеспечивает своевременное получение информации о проходящем строительстве, а также соответствию будущего строения требованиям ГОСТ. При этом особо пристально следят за теми частями зданий, которые обеспечивают устойчивость всего сооружения.
  4. Мониторинг деформативности – это еще один контролирующий процесс, который заключается в тщательном наблюдении за возможными отклонениями в сооружениях от установленных параметров во время строительства. Мониторинг проводится поэтапно, как и процесс стройки: при заливке фундамента, на каждый отстроенные пять этажей, после окончания стройки. Во время мониторинга особо пристально следят за фундаментом (нет ли прогибов и кренов), самой осадкой здания и его креном, а также отклонениями частей от монолита.
  5. Контроль подземных сетей – осуществляется до, вовремя и после возведения сооружений. Контроль за проседанием здания необходим постоянный, поскольку на данный процесс влияет множество факторов, как человеческих, так и природных. Путем съемки фиксируются все коммуникации (колодцы, дренажи) и их параметры, а также стыковка с другими ранее проложенными сетями и коммуникациями.

Геодезия в строительстве – это необходимость и гарантия безопасности, поэтому нельзя пренебрегать ею в целом или отказываться от какого-либо процесса. Экономия в данном случае может быть трагична.

Важно знать! Геодезические работы необходимы как при общей застройке населенных пунктов и возведении больших инженерных сооружений, так и при выполнении частного мелкомасштабного строительства.

Технологии

То, как осуществляют измерения, зависит от их типа, но в целом, любое строительство осуществляется по определённой схеме.

Технология геодезических работ такова:

  1. Выбор территории для строительства: проводят геологические изыскания, рассматривают рельеф, состав и характеристику грунта, и окружающие территории.
  2. Привязка будущего объекта к уже построенному. Особенно актуален этот пункт в больших городах, где застройка ведется в тесных условиях. Задаче геодезистов – правильно спланировать размещение будущего объекта.
  3. Перенос местности на топографических картах. На этом этапе создается подробный план застройки и отображение всех существующих объектов на нем.
  4. Изучение движения земной коры: определяются сейсмически устойчивые участки земли, зависимость сдвигов от природных условий и прочих факторов. На основе результатов исследования разрабатываются планы строительства и применяются соответствующие технологии.

Во время замеров и подсчетов используют специальные, чаще электронные, инструменты, среди которых:

  • нивелир — инструмент помогает измерить высоты точек объекта;
  • тахометр – с помощью этого прибора строители измеряют углы и высоты точек в пространстве;
  • теодолит – выпускается двух разновидностей: оптический и электронный, помогает правильно измерять углы в пространстве.

Это интересно! Выбираем профессии, связанные с наукой физикой

Основные задачи геодезии.

При определении фигуры и размеров Земли в геодезии исходят из понятия об уровенных поверхностях Земли, то есть о таких поверхностях, на каждой из которых потенциал силы тяжести имеет всюду соответствующее постоянное значение и которые пересекают направления отвесной линии под прямым углом. Направление отвесной линии в геодезии принимают за одну из координатных линий, так как оно в каждой данной точке может быть построено однозначно при помощи уровня или даже простейшего отвеса.

Поверхность воды в океанах и сообщающихся с ними морях в состоянии полного покоя и равновесия являлась бы одной из уровенных поверхностей Земли. Эту уровенную поверхность, мысленно продолженную под материками так, чтобы она везде пересекала направление отвесной линии под прямым углом, в геодезии принимают за основную уровенную поверхность Земли (рис. 1). Фигуру же этой уровенной поверхности в геодезии принимают за сглаженную фигуру Земли и называют геоидом.

Теория фигуры Земли и результаты астрономических и геодезических измерений показывают, что фигура геоида в общем близка к эллипсоиду вращения. Эллипсоид, который по своим размерам и положению в теле Земли наиболее правильно представляет фигуру геоида в целом, называют общим земным эллипсоидом. Изучение фигуры Земли заключается в определении размеров земного эллипсоида и его положения в теле самой Земли, а также отступлений геоида от этого эллипсоида. Если определить высоты точек земной поверхности относительно геоида, то есть над уровнем моря, то тем самым будет изучена и фигура физической поверхности Земли, Размеры земного эллипсоида и его положение в теле Земли устанавливают путём определения направлений отвесных линий в избранных точках земной поверхности и взаимного положения этих точек в известной системе координат. Направление отвесной линии в данной точке характеризуется её астрономической широтой и долготой, которые выводятся из астрономических наблюдений. Взаимное положение точек земной поверхности определяется их геодезическими широтами и долготами (см. Геодезические координаты), которые характеризуют направления нормалей в этих точках к поверхности так называемой референц-эллипсоида. Угол между отвесной линией и нормалью к поверхности референц-эллипсоида в данной точке есть отклонение отвеса и характеризует наклон уровенной поверхности Земли относительно поверхности референц-эллипсоида в этой точке. По наблюдённым отклонениям отвеса в избранных точках определяют как размеры земного эллипсоида, так и высоты геоида (см. Астрономо-гравиметрическое нивелирование). Совокупность астрономических и геодезических измерений, позволяющих определять фигуру и размеры Земли, носит название градусных измерений и приводит к геометрическим методам решения этой проблемы. Существуют и физические, или динамические, методы изучения фигуры и гравитационного поля Земли. Они основаны на измерениях ускорения силы тяжести и наблюдениях за движением искусственных спутников Земли и космических летательных аппаратов. Измеренные величины силы тяжести сравнивают с соответствующими теоретическими величинами, рассчитанными для известной эллипсоидальной уровенной поверхности. Разности тех и других величин силы тяжести называют аномалиями силы тяжести и характеризуют отклонения уровенных поверхностей Земли от поверхности эллипсоида. Они позволяют определить сжатие Земли и отступления геоида от земного эллипсоида. Отступление реальной фигуры Земли от правильной шарообразной формы и аномалии гравитационного поля Земли вызывают возмущения орбит искусственных космических объектов. Зная же возмущения орбит искусственных космических тел, на основании наблюдений и измерений можно определить фигуру и внешнее гравитационное поле Земли. Совместно применение геометрических и динамических методов позволяет определить одновременно фигуру, размеры и гравитационное поле Земли как планеты.

Отклонения отвеса и аномалии силы тяжести отражают особенности внутреннего строения Земли и используются для выяснения вопросов о распределении масс внутри Земли и особенно для изучения строения земной коры. Данные о фигуре, размерах и гравитационном поле Земли имеют большое значение для установления масштаба взаимных расстояний и масс небесных тел. Они используются также для механико-математических расчётов, связанных с запуском космических летательных аппаратов и с изучением космического пространства вообще. Другие задачи геодезии состоят в различных измерениях на земной поверхности для отображения её на планах и топографических картах, которые имеют большое значение для военного дела и без которых не обходится ни одно народно-хозяйственное и инженерно-техническое мероприятие. Геодезические работы производятся с целью изыскания, проектирования и строительства гидротехнических сооружений и промышленных предприятий, ирригационных и судоходных каналов, наземных и подземных путей сообщения и т. п. Геодезические работы и топографические карты служат основой планировки городов и населённых пунктов, землеустроительных и лесоустроительных мероприятий, поиска полезных ископаемых и освоения природных богатств и т. д. Иногда приходится считаться с тем, что фигура и гравитационное поле Земли, а также земная поверхность претерпевают изменения, обусловленные различными внешними и внутренними причинами. Эти изменения изучаются по результатам повторных астрономических наблюдений, геодезических измерений и гравиметрических определений. Предполагаемое горизонтальное движение материков изучают повторными астрономическими определениями положения отдельных точек земной поверхности. Повторные геодезические определения взаимного положения и высот точек земной поверхности через известные промежутки времени позволяют установить скорость и направление горизонтальных и вертикальных движений земной коры.

Рис. 1. Разрез земной поверхности вертикальной плоскостью.

Рис. 2.
Схема триангуляции.

Фото 2

Что такое геодезия

Геодезия - это наука, которая занимается методами точных измерений элементов поверхности земли и их обработкой для определения географических положений на поверхности земли. Это также имеет дело с теорией размера и формы земли.

Геодезия - это техника, профессия и наука определения наземного или трехмерного положения точек, а также расстояний и углов между ними. Специалист по землеустройству называется землеустроителем. Эти точки обычно находятся на поверхности Земли, и они часто используются для установления карт местности и границ владения, таких мест, как углы зданий, или местоположения недр, или других целей, требуемых государственным или гражданским законодательством, таких как собственность продажи.

Геодезисты работают с элементами математики (геометрия и тригонометрия), физики, техники и права. Они используют оборудование, такое как тахеометры, роботизированные тахеометры, GPS-приемники, призмы, 3D-сканеры, радиоприемники, портативные планшеты, цифровые уровни и программное обеспечение для съемки.

Геодезия является элементом развития человеческой среды с начала истории человечества. Планирование и выполнение большинства форм строительства требуют этого. Она также используется в транспорте, связи, картографии и определении правовых границ для владения землей.

Основы геодезии включают опорные системы, определение опорных областей и картографических проекционных систем и их реализацию в виде геоидальных моделей, систем управления и постоянных сетей GNSS. Они используются для приведения пространственных данных (геоданных) всех типов в гармонию с однозначной и точной геометрической корреляцией с европейскими и глобальными системами отсчета. Благодаря геодезическим критериям и справочным данным для национальной инфраструктуры геоданных, можно изобразить геоданные и их национальную и международную взаимозаменяемость однородным образом.

Геодезическая система отсчета определяет пространственную систему координат (начало и ориентация осей координат) для указания пространственных положений (местоположение, высота) и гравитации точек.

Постоянные станции GNSS формируют современные ориентиры для определения местоположения и съемки. Приемники GNSS, расположенные на нескольких тысячах станций по всему миру.

В дополнение к обычным процедурам съемки, а именно триангуляции и нивелирования, съемка с использованием технологии GNSS играет центральную роль.

Определение географического положения на поверхности Земли может быть сделано путем наблюдения небесных тел и, таким образом, подпадает под геодезическую астрономию, но это может быть включено в геометрическую геодезию.

Гравитационное поле Земли является физическим объектом и участвует в большинстве геодезических измерений, даже чисто геометрических. Измерения геодезической астрономии, триангуляции и нивелирования, все существенно используют отвесную линию, являющуюся вектором направления гравитации. Таким образом, астрогеодезические методы, в которых используется астрологическое определение широты, долготы и азимутальных и геодезических операций, например триангуляция, трилатерация, измерение базы и т. д., могут рассматриваться как принадлежащие к физической геодезии в той же степени, что и гравиметрические методы.

Спутниковая геодезия включает в себя методы наблюдений и вычислений, которые позволяют решать геодезические задачи путем использования точных измерений в направлении.

Особо следует отметить, что геодезия служит обществу, предоставляя ориентиры для широкого спектра практических применений, таких как навигация по суше, морю и в воздухе, создание инфраструктуры и определение надежных границ для объектов недвижимости или даже морских зон. В прошлом такие системы отсчета создавались на национальном или региональном уровне. Сегодня благодаря использованию существующих и планируемых глобальных навигационных спутниковых систем (GNSS), таких как GPS, Glonass, Galileo и Compass/BeiDou, геодезия обеспечивает доступ к координатам точек в глобальной системе координат в любое время и в любом месте на поверхности Земли.

Благодаря существенному улучшению геодезических приборов и методов в настоящее время, геодезия стала больше заботиться об изменениях «геометрии» и «гравиметрии» элементов на поверхности, под или над поверхностью твердой Земли и океанов, чем это было ранее. В прошлом основными «клиентами» геодезии были геодезические, картографические и геопространственные дисциплины, тогда как сегодня геодезия обслуживает все науки о Земле, включая геофизические, океанографические, атмосферные, гидрологические и экологические научные сообщества. Геодезические «продукты» не только способствуют нашему пониманию Земли, но и приносят пользу многим общественным мероприятиям, начиная от предотвращения и смягчения последствий стихийных бедствий до защиты биосферы и окружающей среды.

Международная ассоциация геодезии является научной организацией, ответственной за геодезию. Является членом ассоциации Международного союза геодезии и геофизики.

Работа геодезиста

Фото 4

Основные задачи геодезиста:

  1. Подготовить и поддерживать эскизы, карты, отчеты и юридические описания опросов, чтобы описать, сертифицировать и принять на себя ответственность за выполненную работу.
  2. Проверить точность данных обследования, включая измерения и расчеты, проведенные на участках обследования.
  3. Направлять или проводить обследования с целью установления правовых границ для объектов недвижимости на основании юридических документов.
  4. Записывать результаты обследований, в том числе форму, контур, местоположение, высоту и размеры земли или наземных объектов.
  5. Рассчитывать высоту, глубины, относительные положения, свойства линий и другие характеристики местности.
  6. Подготавливать или контролировать подготовки всех данных, диаграмм, графиков, карт, записей и документов, связанных с обследованиями.
  7. Записывать описания обследований границ собственности для использования в документах, договорах аренды или других юридических документах.
  8. Планировать и проводить наземные исследования, предназначенных для установления базовых линий, высот и других геодезических измерений.
  9. Поиск юридических записей, обследований и прав собственности на землю с целью получения информации о границах собственности в районах, подлежащих обследованию.
  10. Согласовывать результаты с работой инженерного и архитектурного персонала, клиентов и других лиц, связанных с проектами.
  11. Настраивать геодезические приборы, чтобы сохранить их точность.
  12. Устанавливать фиксированные точки для использования при создании карт с использованием геодезических и инженерных инструментов.
  13. Определите долготы и широты важных особенностей и границ в районах съемки, используя теодолиты, транзиты, уровни и спутниковые системы глобального позиционирования (GPS).
  14. Обучать помощников и направлять их работу в таких видах деятельности, как проведение опросов или составление карт.
  15. Проводить анализ целей и спецификаций обследования для подготовки предложений по обследованию.
  16. Вычислить геодезические измерения и интерпретировать данные съемки, чтобы определить положение, форму и высоту геоморфологических и топографических объектов.
  17. Разработать критерии для методов и процедур обследования.
  18. Разработка критериев для проектирования и модификации инструментов обследования.
  19. Провести исследование методов съемки и картографирования, используя знания методов составления фотограмметрической карты и электронной обработки данных.
  20. Найти и отметить участки, выбранные для геофизических работ, таких как поиск нефти или других минеральных продуктов.
  21. Обследовать водоемы, чтобы определить судоходные каналы и обеспечить данные для строительства волнорезов, пирсов и других морских сооружений.
  22. Установить прямые аэрофотосъемки указанных географических районов.
  23. Определить спецификации для фотографического оборудования, что будет использоваться для аэрофотосъемки, а также высоту, с которой нужно фотографировать местность.

Интересные факты и этапы развития геодезии

Первым человеком, предположившим шарообразную форму нашей планеты, был древнегреческий математик и философ Пифагор (570 – 490 годы до нашей эры). Его идея о вращении Земли вокруг оси в течение суточного периода, а за год вокруг Солнца, получила научное подтверждение польским астрономом Николаем Коперником (1473-1543). Его учение о гелиоцентрической системе стала своего рода началом первой научной революции.

Выдающимся событием следует считать деятельность персидского астронома, математика, геодезиста и философа Аль-Бируни (973-1048годы). В области геодезии он производил расчеты по определению радиуса Земли. Удивительные результаты вычислений Аль-Бируни получил при определении длины дуги меридиана угловой величиной в один градус на 32 параллели северной широты значением в 110,278км. При современных измерениях были получены линейные значения дуги в 110,895км.

Эти яркие события по определению формы и размеров Земли, измерениям на ее поверхности характерны по своему предмету исследований учеными в первый период развития геодезии.

Началом второго этапа в эволюционировании геодезической науки считаются времена морских путешествий и географических открытий: четырех экспедиций в Америку Христофора Колумба (1492-1504), трех мореплаваний в Индию Васко да Гама (1497-1524), кругосветки Фернана Магеллана (1519-1522).

В это период происходят важнейшие изобретения в геодезии:

  • зрительной трубы итальянца Галилея (1609 год);
  • метода триангуляции нидерландца Снелиусса (1614 год);
  • первое применение сетки нитей в приборах французом Пикаром;
  • выход в свет научного труда англичанина Ньютона, в котором теоретически обосновывается полюсное сжатие и определяется его величина.

Третий период характерен разрешением многих геодезических задач:

  • нахождением размеров эллипсоида Земли;
  • определением геоида;
  • математической обработки измерений различными методами наименьших квадратов;
  • возникновением новых геодезических приборов, новых направлений наук геофизики, гравиметрии.
  • определения фигуры физической поверхности Земного шара.

В современный период значительным продвижением в геодезической отрасли являются использование спутниковых технологий, появление глобальных навигационных систем позиционирования, новых физических методов измерений, геоинформационных и компьютерных систем.

Вопросы и ответы

Источники

Использованные источники информации.

  • https://www.finanbi.ru/geodeziya-887
  • https://hiterbober.ru/realty/chto-takoe-geodeziya.html
  • https://znaniya.guru/karera/chto-takoe-geodeziya.html
  • https://geography-a.ru/menu-4-6/725-geodeziya.html
  • https://geostart.ru/post/311
0 из 5. Оценок: 0.

Комментарии (0)

Поделитесь своим мнением о статье.

Ещё никто не оставил комментария, вы будете первым.


Написать комментарий